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1. INTRODUCTION

This study, conducted as part of a Master’s degree in fishery science at Institut Agro
Rennes, with the support of MARBEC and LIRMM laboratories, aims to predict the level of
fish biodiversity on Mediterranean coasts through the use of deep learning algorithms and a
seascape approach.

Coastal ecosystems are vital to the economy, livelihood and well-being of numerous
countries as hotspots of biodiversity and abundance. They are very dynamic systems under
biotic and abiotic fluxes which make them interconnected with the open ocean and terrestrial
ecosystems but also highly vulnerable to external threats. In the context of growing human
density and global warming, coastal ecosystems are exposed to a wide range of stressors such
as fishing, direct habitat disruption, heatwaves and pollution (Bevilacqua et al., 2021). The
need for the conservation of such vulnerable ecosystems and habitats is urgent and requires a
data-driven approach to set-up effective protection measures. Under the condition of careful
design and placement, marine protected areas, or MPA, have proven their effectiveness for
the conservation of coastal ecosystems and their species (Claudet et al., 2006), notably in the
Mediterranean Sea, and are part of the European Biodiversity Strategy for 2030, with a goal
of 30% protection and 10% strict protection (Sala et al., 2012). Yet, the Mediterranean is still
poorly protected with only 6% of the Mediterranean basin under the MPA status. For 95% of
these areas, Claudet et al. (2020) found that protection was not stronger inside than outside,
leading to only 0.23% of the total Mediterranean Sea being fully or highly protected.

It is therefore essential to engage in systematic planning processes based on all
available scientific sources, and to massively gather data on coastal ecosystems to determine
potentially vulnerable areas, as well as to assess the state of ecological communities
(Bevilacqua et al., 2021). To reach this objective, data on species richness, abundance and
ecological niches are key to better protect marine ecosystems and predict their potential
trends under scenarios.

Regrettably, the cost, both in time and resources, to obtain such data, has proven to be
a major limitation in the global acquisition of information on coastal ecosystems, (Lundquist
and Granek, 2005; Mora et al., 2008). Therefore, the short-term development of conservation
planning requires the establishment of new efficient and harmonized data production methods
(Edgar et al., 2016). To overcome field limitations, modeling from empirical data has
imposed itself as a widespread and powerful approach (Airamé et al., 2003). Over time, a
wide range of predictive models were developed, from simple Generalized Linear Models
(GLM) based on social, environmental or habitat features of sample locations which linearly
correlate to species richness and abundance (Knudby et al., 2010; Mellin et al., 2010) to
machine learning methods such as random forests which consider nonlinear multiple
interactions and tend to perform better in terms of prediction accuracy. For instance, Knudby
et al. (2010) have compared multiple models in their predictive ability for species diversity
and abundance values on the coast of Zanzibar using environmental variables as predictors.
Machine learning models, namely random forest and bagging, proved to be significantly
more accurate than simpler GLM or Generalized Additive Models (GAM) by 11% in
predictive power. Most of these models rely on the correlation between the presence of a
given species and its immediate environment. Since these models can be used to predict the
distribution of species across a given area, they are called Species Distribution Models or
SDM.



Yet, SDM and species richness models that consider environmental data as predictors
have often been limited in their predictive accuracy : Knudby et al. (2010), reached a
minimum RMSE score 6.4 on species richness with a bagging algorithm. This lack of
precision partly derives from the exclusive use of local values of these environmental
predictors, completely ignoring the effect of the surrounding scene. This classical approach
also appears limited in the light of the MacArthur and Wilson’s theory of island biogeography
(1967), stating that an island’s biodiversity increases with its size and distance to the
mainland, and setting the basis for landscape ecology and the study of metapopulations
(Levins, 1969). In the case of a seascape approach, treating patches of habitats, particularly
hard bottom substrates, as islands in a soft bottom matrix appears essential to better
understand and model the status and the biodiversity of a given ecosystem. Surprisingly, this
seascape approach embedding predictors beyond the local context in predictive models is still
rarely implemented owing to the complexity of considering spatial patches of predictor
values in classical models. The main breakthrough of my Master Thesis is considering
predictors of coastal biodiversity in a seascape context where local values can be treated in
their respective locations amidst one another.

This approach considers biotic assemblages as sensitive to both local and regional
features, as demonstrated by Belmaker et al. (2011, 2005), as well as Pittman et al. (2004),
who showed that species richness in a reef increases with its isolation from a continuous reef
patch, as well as with its size. Species richness and abundance are also linked to the shape of
a reef (Grober-Dunsmore et al., 2008), as well as to the presence of seagrass beds in its
immediate surroundings (Grober-Dunsmore et al., 2007; Mellin et al., 2007; Pittman et al.,
2004). The location of a reef in a seascape also influences the response of its biocenosis to
local environmental variables (Sievers et al., 2016) as well as to their temporal variability
(Gilby et al., 2016). In general, and at the scale of an individual patch or a local ecological
community, Kostylev et al. (2005) found that the complexity and structure of the habitat
shape the structure of the species assemblage that it shelters. Yet, previous studies did not
reach a consensus on the scale of the seascape structure’s effect on fish assemblages (Mellin
et al., 2009), in part because of the complex relationships between a biocenosis and its
biotope and the diversity of seascape features and interactions. For a model to be able to
successfully take into account these features across spatial scales to predict species richness,
it would arguably be necessary to reach a step beyond traditional methods, into the field of
iterative pattern learning via deep neural networks based on seascape information.

The recent emergence of powerful computing devices allowed the development of
neural networks, from concepts that had been theorized since the 1980’s. Models are now
able to handle massive datasets as input variables, and iterate over them in order to extract
relevant information for the computing of various tasks, notably predictive models. In deep
learning algorithms, data pass through multiple “hidden layers” that interpret abstract
information and extract progressively high level relevant features and their subtle
interactions. At the end of each pass, an error value is computed and fed backwards, or “back
propagated” through the network, which is updated accordingly. This allows for a highly
diversified range of cases, making for a better precision in numerous prediction problems
(Zhu et al., 2017). Deep learning networks are increasingly used in ecology (589 papers
between 2019 and 2022), including in so-called deep-SDM using remote sensing data. They
can be seen as an alternative to mechanistic models, mostly used in the past (Borowiec et al.,
2022), but are still rarely used on coastal ecosystems.



One of the main challenges and backsides of deep learning models is that they require
a large amount of standardized labeled data to train the models, which is particularly critical
in the marine environment where each sampling method can provide a different set of species
detected (Dalongeville et al., 2022; Valentini et al., 2016). For instance fisheries data miss
small and crypto-benthic species while visual surveys miss large and elusive species like
sharks. Large datasets on species distribution such as the one provided by the Global
Biodiversity Information Facility (GBIF) exist, but traditional sampling methods have a
tendency to overlook large portions of cryptic or elusive organisms, thus failing to provide
exhaustive inventories. Additionally, the fact that GBIF originates from participatory science
programs means that it lacks the homogeneity required for an efficient training.

One way to ensure that biodiversity labels can be standardized across coastal
ecosystems is the use of species inventory through novel census methods, such as
environmental DNA. Environmental DNA (or eDNA) is based on the fact that all living
organisms emit biological debris that contain specific genetic material. In the water,
collecting those debris and identifying them through metabarcoding allows to draw up an
inventory of species in a narrow time frame and area. The use of eDNA has the advantage to
perform quasi-exhaustive biodiversity inventories, at least for fish when the genetic reference
database is complete. These inventories are carried out non-invasively and rapidly while
avoiding human bias that can lead to the omission of certain species (Dalongeville et al.,
2022; Sigsgaard et al., 2017). While eDNA could appear as a perfect candidate for the
acquisition of training data to feed deep learning models, two problems arise : firstly, while
research is currently being carried out on the estimation of abundance through eDNA
samples, it has been found that the quantity of genetic material found in the water does not
necessarily correlate with the number of specimen or the amount of biomass that emitted it.
While eDNA concentration can provide a rough estimate of abundance for a single species
(Rourke et al., 2022; Spear et al., 2021), it remains challenging or even impossible, with
current knowledge, to derive precise enough values of species abundance in marine
ecosystems through this method. Secondly, eDNA is still a young field, and while numerous
campaigns aim to provide biodiversity inventories everywhere around the world (Mathon et
al. 2022), the number of samples is still poor (approximately 700 points in the Mediterranean
Sea) when it comes to building a dataset for training deep learning models, given that most
training sets size at least in the tens of thousands (Benkendorf and Hawkins, 2020). The goal
of my Masters Thesis is not to address the first issue since I will focus on fish species
richness only but to overcome the second by taking advantage of large datasets on species
occurrences provided by the Global Biodiversity Information Facility (GBIF).

One way of addressing the issue of limited sample size is to divide the training into
multiple parts, through a process called “transfer learning”. In the first part, the model is
trained to recognize patterns in the training data through a pretext task that should be close to
the final task. In our case, one solution is to pre-train the neural network with the objective of
predicting species occurrences using massive data from Global Biodiversity Information
Facility (GBIF). This pre-trained model would then be saved, and the training would be
completed on scarce but exhaustive data from eDNA surveys, in a process called
“fine-tuning”. If successful, the final model would be able to predict species richness from a
large number of seascape predictors composed of satellite imagery and multiple habitat and
environmental features stacked as a multi-channel image.

The main goal of my Master Thesis is to set-up a novel deep learning method that
would surpass traditional modeling methods on the task of predicting fish species richness on



french Mediterranean coasts from fisheries, protection, environmental and habitat data while
taking into account contextual parameters within a seascape approach. Several data sources
will be exploited as part of a transfer learning strategy, in order to provide a both accurate and
generalizable model for use in the Mediterranean Sea. For comparison, classic random forest
models will be tested on the same task and the effect of contextual parameters will be
assessed through feature permutation.

2. MATERIALS AND METHODS

a. Mediterranean coasts

The Mediterranean Sea is the largest semi-enclosed sea in the world. Home of 17 000
recorded species (Coll et al., 2010), representing 7% of the world’s marine biodiversity with
only 0.82% of the global ocean surface (Bianchi and Morri, 2000), it is a hotspot of
biodiversity (Bianchi and Morri, 2000; Coll et al., 2010). However, the Mediterranean Sea
has become one of the most threatened regions over the span of decades, as ecosystems are
undergoing environmental and biological changes. These changes result from a complex
combination of anthropogenic pressures, such as overfishing, pollution, and habitat
destruction. Mediterranean coastal ecosystems, in particular, are deeply impacted by these
pressures as both areas of high diversity and interfaces (Bevilacqua et al., 2021).

As outlined in the introduction, while reserves have been shown to offer benefits in
terms of restoration of biodiversity inside and outside their borders, their effectiveness as of
today is limited (Claudet et al., 2020), and contingent upon the identification of environments
suited for a maximum impact. It was with the aim of improving our current prediction
capability and extending the network of effective MPA that French Mediterranean coasts
were selected as a framework to this study.

b. Datasets

i.  Response variables

GBIF

The Global Biodiversity Information Facility (GBIF) serves as an international
network and infrastructure dedicated to providing global data on Earth’s biodiversity by
leveraging multiple data sources, from scientific campaigns to citizen science initiatives
(“GBIFE,” n.d.). Being open access, GBIF positions itself as a widely used hub to gather data
on species distribution on a large scale. For the purpose of this study, the data was narrowed
down to marine fishes, specifically chondrichthyes and osteichthyes, using GBIF’s filtering
tools (Registry-Migration.Gbif.Org, 2022). The occurrences were also limited in time, due to
the fact that Sentinel-2 data ranged from 2011 to the present. Geographically, the focus was
solely on the Mediterranean Sea. Additionally, a spatial precision filter was applied, retaining
only occurrences with a spatial precision within 100 meters. The final dataset comprises



75 391 occurrences of 181 species ranging from 2011 to 2021. Each sample within the final
dataset includes the species’ complete name, GPS coordinates, survey date, spatial precision
and, when available, information on abundance.

Environmental DNA

Environmental DNA data was collected through four coastal campaigns conducted by
MARBEC from 2018 to 2021 along the French Mediterranean coast (Figure 1), employing
various sampling methods such as divers and boats. For each sample, 30 liters of water were
filtered along a 2 kilometer, 30 minutes transect through an Athena© peristaltic pump. Water
was sent through a VigiLife© 0.2 uM cross flow filtration capsule. Following the transect,
the capsule was promptly filled with 80 mL of CL1 conservation buffer and stored at room
temperature. To ensure rigorous contamination control, a strict protocol was followed during
each sampling operation, which included the use of disposable gloves and filtration
equipment. Two pumps were active on most of the sampling points for the purpose of
generating replicates. Each replicate was treated as an individual data point. Once acquired,
the samples were sent to a dedicated laboratory. Metabarcode sequences were then amplified
through PCR using a 12S mitochondrial rRNA primer pair. Extracted DNA was then purified
and sequenced. Sequenced material was paired with MARBEC’s database comprising 386
sequences from 156 fish species. Points below 50 meters of depth were excluded so as to
only keep surface samples. The final dataset comprises 441 data points located for the most
part on the French coast, including Corsica, with a few samples around the Balearic islands.
Species richness was calculated for each sample as the sum of species detected by the
analysis.
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Figure 1 : Map of sampling points conducted by MARBEC in the Mediterranean Sea, and
MPA with corresponding IUCN protection level



ii.  Explanatory variables

Numerous studies have attempted to explain the richness and abundance of
Mediterranean species using different sets of explanatory variables (Bell, 1983; Charton and
Ruzafa, 1998; Fanelli et al., 2013). Some crucial abiotic parameters identified in determining
the structure of assemblages are presented in Table 1. It is worth noting that most studies do
not fully corroborate one another, and that the scale of the effect of each parameter varies
greatly with each case. Additionally, the recent development of remote sensing technologies,
especially multispectral sensing using satellites and drones, facilitated access to some field
data, since various ecological processes can be extracted from certain channels (K. S. He et
al., 2015). With the goal of training a deep learning model, environmental variables were
selected and extracted as multi-channel tiles for each GBIF and eDNA sample. Satellite
imagery was used as a basis for each tile, since it represents raw data from which parameters
can be derived without being manually computed, allowing for a greater flexibility in model’s
interpretation (K. S. He et al., 2015; Kavanaugh et al., 2021). Given the specific conditions of
the Mediterranean Sea (opacity, depth etc.), other environmental variables such as bathymetry
and substrate had to be extracted from various maps. The sources of explanatory variables
and their effects on fish communities are given in Table 1 and developed in the following
section.

Table 1 : Main drivers determining fish assemblages as identified in the literature, with their
effect and corresponding data sources

Variable Data source | Tile extent | Effect Reference
and resolution

Bathymetry NOAA 30 km Richness and abundance | Rees et al., 2014
1.5 km decrease with depth and | Rule and Smith,
increase with slope 2007
Richness increases with | Selfati et al., 2019
EMODnet 2.945km | vertical variability Stefanoudis et al.,
0.095 km 2019
Sea  Surface | CMEMS 30 km Richness increases with | Condal et al., 2012
Temperature | 0.95 km SST Gibran and Moura,
(SST) 2012
Sigsgaard et al.,
2017
Vilas et al., 2020
Substrate type | EMODnet 3 km Richness increases with | Monfort et al., 2021
~50m rugosity, hotspots on | Moreno, 2002

hard-bottom substrate Planes et al., 2000
Hard-bottom  patches | Sahyoun et al.,
serve as island of high | 2013

diversity and impact




surrounding areas Ushiama et al.,
Substrate continuity | 2016
impacts MPA effects
Chlorophyll CMEMS 30 km Richness decreases and | Awada et al., 2021
1 km abundance increases | Chassot et al., 2010
with primary production | van Denderen et al.,
2014
Fishing Global Fishing | 10 km Higher impact of active | Collie et al., 2000
Watch analysis bottom gear Jennings and
0.01 degree Impact on abundance | Kaiser, 1998
(approx. 1 km) ratios Sinclair and
Valdimarsson, 2003
Marine WDPA 10 km Increased abundance in | Claudet et al., 2006
Protected protected areas Dalongeville et al.,
Areas Structural changes of | 2022
communities Guidetti et al., 2014
Benefits vary among
taxa

In order to maximize the efficiency of the training process, a relevant tile size had to
be determined. One the one hand, maximum spatial precision is desirable for all data, and
would permit more accurate biodiversity analysis. Because of the variety and uncertainty of
ranges in the effect of environmental variables, a large spatial extent would be preferable, in
order to keep as much information as possible. On the other hand, the image size that can be
fed through most deep learning architectures is limited by the capacity of the hardware, often
to only a few hundreds of pixels both in width and length. It is also worth noting that
extending the tile size too much would, in a Convolutional Neural Network (CNN), result in
some confusion for the model since some features that are present in the image, but are too
far away from samples to have a real effect on communities, may create noise in the dataset
(Benjamin Bourel, personal communications). Data quality is also a limitation, since the
resolution of most datasets is above 30 m. Consequently, a compromise had to be established.
In terms of precision, multiple studies found that the effect of important benthic features such
as depth and substrate cover was variable, ranging from 10 m to a few hundred meters
(Grober-Dunsmore et al., 2007; Mellin et al., 2007; Purkis et al., 2008; Rees et al., 2014).
However, anthropogenic factors tend to have a higher range : Hackradt et al. (2014) have
found that MPA spillover was dependent on the species and could expand over thousands of
meters. Additionally, spillover was found to be dependent on the habitat within the MPA, and
the connectivity at its boundaries. Green et al. (2015) note that home range varies among and
within reef-associated species, scaling from 0.5 km to thousands of kilometers for some
predators, with most strictly reef species limited to a few kilometers. Larval spillover is
mostly below 5 to 15km. It is consequently essential to capture this range through a
sufficient extent. Considering that the pre-training was carried out in the continuity of
trainings that had used ImageNet datasets of input size is 256x256 pixels, tile size was chosen
for each variable so as to approach a 256x256 image size given the spatial resolution of the
data while preserving the integrity of the data and avoiding interpolation. Groups of different
tile extents were created following this rule. Since channel alignment is essential for the
analysis of interactions between features, the number of groups was kept as small as possible.
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3 groups of variables were consequently created, each with a tile extent of approximately
3 km 10 km, and 63 km. Features that were identified in the literature to interact with each
other, such as depth and substrate, were kept in the same group. CNN training using multiple
tile sizes as input has already been tested and proven successful during previous projects
carried out by the LIRMM laboratory (Benjamin Deneu, personal communications).

Following this decision, square areas were computed around each data point in EPSG 4326
for each variable, in both the GBIF and eDNA datasets.

Sentinel-2

Sentinel-2 tiles were gathered through custom requests via Microsoft Planetary
Computer (Copernicus, 2011). Since computing power is a limiting factor in the training of
CNN, it was decided to limit input channels to the RGB band (band 2, 3 and 4) as well as to
the infrared band (band 8).

Bathymetry

Bathymetry data was acquired for two resolutions in order to consider both local fine
grain structural information and large contextual patches. Large scale depth data is provided
by the National Oceanic and Atmospheric Association (NOAA) and was acquired through the
geoenrich 0.5.8 package for python. Fine resolution data was acquired through EMODnet via
its Digital Bathymetry product based upon a collection of surveys and satellite derived data.
The resolution of both rasters is computed into Table 1. Geoenrich’s enrichment tool was
used to automatically produce 30x30 km georeferenced rasters for the large tiles, while a
custom made tool was used for the fine grain data.

SST

SST data was provided by the Copernicus Marine Environment Monitoring Service
(CMEMS) and acquired through geoenrich. All data comes from the Mediterranean Sea -
High Resolution .4 Sea Surface Temperature Reprocessed dataset (CMEMS, 2023a).

Substrate

Substrate was acquired based on the high resolution vector EUSeaMap generated by
EMODnet in 2021 (Vasquez et al., 2019). This map of the Mediterranean floor provides
harmonized information on seabed habitats, based on the European Nature Information
System (EUNIS) classification (Davies et al., 2004). Significant discrepancies among classes
were noticed between areas of the Mediterranean Sea, in all likelihood caused by
inconsistency in mapping campaigns. The similarity between some of the EUNIS classes led
to the merging of several substrate types, both in an effort to standardize data and to limit the
size of each input : sandy mud, muddy sand, fine mud and fine mud or muddy sand or sandy
mud were grouped together. Seabed sediment was grouped with lagoon as both are
interchangeably used for both classifications. Coarse and mixed sediments and mixed
sediments were merged. As a consequence, 8 final classes were used. Because a vector map
has virtually no resolution, an inspection was performed on coastal areas using QGIS, and
revealed the presence of habitat patches smaller than 50 meters along the French coast.
Consequently, each habitat type was attributed a single code, and the map was rasterized
using QGIS with a resolution of roughly 50 m, in order to keep information on substrate
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patches as precise as possible, while keeping a manageable file size for the raster. A custom
clipping program was developed and used on the general Mediterranean raster. As CNN take
into account the interaction between features, keeping information on habitat type coded as
multiple values on a single map would generate artificial closeness between some habitats,
and lead the model to interpret false relations. In order to avoid this problem, it was necessary
to one-hot encode the data - i.e. coding 1 if the habitat is present, 0 if not, and -1 if there is no
data - and produce rasters carrying as many channels as there are habitat types. A custom
program was developed to do so.

Chlorophyll

Chlorophyll data was acquired through the Mediterranean Sea Ocean Colour Plankton
MY L4 daily gapfree observations and climatology and monthly observations dataset
provided by CMEMS (CMEMS, 2023b) and accessed through geoenrich.

Fishing pressure

Fishing pressure data was provided by Global Fishing Watch (GFW) through their
AlS-based commercial fishing dataset. Vessels are identified and classified via CNN,
identification registries and expert panels (Kroodsma et al., 2018). Data was available from
2012 to 2020, and consisted of one csv file per day, with each row containing information on
a fishing ship, its location at a given time, the duration of fishing and the fishing method
employed. A spatial join was performed between the diversity datasets and the GFW dataset,
in order to group fishing points by studied tile. Fishing gears were separated, in order to
account for the varying impact of different fishing methods on benthic communities, as
discussed by Jennings and Kaiser (1998) and Sinclair and Valdimarsson (2003). Seine,
trawling and dredging were considered as more destructive methods, and separated from the
others. Collie et al. have found that the temporal scale of fishing impact depends on the gear
as well as the type of habitat (2000). To incorporate this factor, the number of hours spent
fishing was summed within the last 7 days, and last 30 days. To accommodate for the lack of
fishing data in 2011 and 2021, it was assumed that no significant change happened between
2011 and 2012, and that 2019 was comparable to 2021. Fishing data from 2012 and 2019 was
consequently respectively used for 2011 and 2021. Each occurrence was thus associated with
4 fishing pressure values.

MPA

Data on Marine Protected Areas was gathered through the World Database on
Protected Areas (UNEP-WCMC and IUCN, 2023). Filters were used to initially narrow down
the data on Mediterranean MPA associated with an [UCN classification. A protection value
was attributed to each level, 1 being the least protected (level VI), to 7 being the most
protected (level Ia) (Day et al., 2019). Each tile was then clipped using the same method as
for the substrate data. Level 0 both corresponds to non-protected areas, and to land.

Latitude and longitude were decided to be included as features, in order to account for
possible interactions between the geographical situation of samples and features. In order to
keep the training process flexible and to facilitate feature ablation procedures, the
environmental data tiles were kept separated, and it was decided to selectively merge them as
channels at the start of the network. 17 of the 23 channels used for training are presented in
Figure 2. They correspond to channels that were not generated from single values.
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Figure 2 : 17 channels of the 23 used for the analysis of sample SPY181824, taken near the
Riou archipelago

iii.  Data preprocessing

During the training of a CNN, wide differences in the scale of the input data can cause
instability in the process, making it slow or unable to reach convergence. Additionally, inputs
of larger magnitude can become overused by the model. In order to avoid these issues, it is
essential to normalize the dataset (Maharana et al., 2022). Input layers consisting of
continuous variables, such as bathymetry and SST, were scaled to have a mean of 0 and a
standard deviation of 1. In order to generalize the weights throughout the pre-training and
fine tuning process, standard deviation and mean values of the GBIF pre-training dataset
were used for all normalized channels, for both pre-training and fine-tuning. Input consisting
of classes, such as substrates and MPA, were not normalized.

For the sake of comparison, data for the random forest models were derived from the
CNN input rasters. A center value, corresponding to the value at the sampling location, was
extracted for each raster. Additionally, standard deviation was calculated for all continuous
variables so as to retain some information about the spatial context and habitat heterogeneity.
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For classified substrate data, context was captured in the form of a Shannon entropy index,
representing the diversity in substrates for a single tile. Since random forests algorithms are
not distance-based models comparing feature values, but rather tree based models making
splits in the data, normalization is not required and can impact the results of the regressor. It
was consequently not used for the baseline models.

c. Neural networks

i.  General operations of a neural network

Neural Networks (NN) are models structured around a network of nodes (neurons)
that perform mathematical operations on input data, in an attempt to mimic the general
functioning of a brain. Each neuron represents a single linear regression model that takes in
inputs, treats them, and produces an output that will be sent to the next neuron. It is
associated with a bias, a set of weights, and an activation function. Given these parameters,
the formula for the output of a neuron is as follows :

output = f(b + Y wi X xi) With :
i

f : Activation function
b : Bias

wi : Weight for input i
xi: Input i

The activation function is designed to introduce non-linearity into the output by determining
whether a neuron should be activated or not, and scale its response to the input. This will,
effectively, assess the importance of a single neuron in the final task and make sure that the
output cannot be written as a linear combination of the inputs. At the end of the network, in
the output layer, an error value will be computed by comparing the prediction with the
expected result through the use of a cost, or loss function. In order to train itself, the model
will automatically leverage the value of the weights and biases of each neuron through a
process called gradient backpropagation : after the calculation of the loss value, it is sent
backwards into the network and used to evaluate the participation of each neuron through the
use of partial derivatives. Weights and biases of each neuron are updated accordingly. This
process is repeated for each sample of the dataset, for a given number of passes, or epochs.
Should the hyperparameters of the training be well set, the model will converge.

ii.  Case of the CNN

In our case, the need for the analysis of geospatial structures calls for computer vision
through deep learning : in this type of models, images are treated as numerical data upon
which gradually specific filters are applied in a process called “convolutions”. This allows,
through multiple iterations through the dataset, for the recognition of complex spatial
structures and interactions between the channels of the image that is being fed (Zhu et al.,
2017). Such models have already been used for SDM using land satellite images acquired
through the Sentinel-2 program (Estopinan et al., 2022), as well as to predict rice yields in
China through a regression task via satellite imagery (Chu and Yu, 2020). For our task, inputs
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are tiles of high resolution satellite images and maps, associated with information on the
communities being sampled (richness, abundance etc.). A Convolutional Neural Network
(CNN) is a type of neural network designed to treat grid-like data such as images. CNN are
typically divided into three types of layers :

Convolution layer

In CNN architectures, the weights are in the form of kernels, matrices that slide over
the input grid. For each position, an output value is computed through a dot product operation
between the kernel and the portion of the grid it is placed over. If the kernel is placed above
the structure it was trained to detect, it will output a greater value. Each position of the kernel
will produce a single value that will be appended to a new matrix called a feature map, saving
the response of the entire grid to the kernel (Figure 3).
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Figure 3 : Schematic convolution and max pooling in a CNN
Pooling layer

Once the activation map is computed, a pooling operation will be applied on it. This will
reduce the size of the output and the number of parameters necessary, allowing the network to
gain efficiency. Popular types of pooling include max pooling and average pooling : the
feature map is partitioned in equal areas, and the maximum value for each area is attributed to
it. For average pooling, the average of all values is attributed to each partition. Figure 3
displays a schematic representation of a convolution and max pooling operation of a 3x3
kernel on a 6x6 grid. In this situation, the output corresponds to the probability that the
feature was detected at least one time in the input. Here, stride was set to the size of the
kernel for better visualization, but it is classically smaller, resulting in higher definition
feature maps and outputs.

Fully connected layer
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After passing through all hidden layers, the information, usually in the form of a 3D tensor, is
flattened and fed into a fully connected layer - i.e a layer where all previous neurons are
connected with all current neurons - as a 1D tensor. In the case of a regression task, a single
final neuron in the fully connected layer will allow the output of a single value (Figure 4).

Fully connected layer

Hidden layer 1 Hidden layer 2
Input data f L !
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Figure 4 : Schematic operation of a CNN performing a regression analysis on a
satellite image to output a predicted value y

1ii.  Choice of architecture

Increasing the number of layers in a CNN can theoretically increase the model’s
ability to learn complex structures and features. However, it has been observed that using a
deeper network decreases performance, notably because the model may encounter issues such
as vanishing gradients. This stems from the way weights are updated during training : loss is
propagated backwards in the form of a gradient, which is the vector of partial derivatives of
the activation function, with respect to the corresponding input variable. In each layer,
gradients are multiplied by the weight matrix of each layer they pass through. This may cause
them to decrease exponentially, reducing the scale of the weight update for each layer. As a
consequence, early layers will receive very small gradient updates leading to slow and
ineffective learning. One way of dealing with this issue while keeping the advantages of deep
architectures is through the use of residual networks, or ResNet, which were introduced in
2015. ResNet incorporate skip connections, also known as residual connections, that facilitate
the flow of information through the network, mitigating the risk of a vanishing gradient (K.
He et al., 2015). Multiple types of ResNet exist, and are distinguished from each other by
their number of layers. Because of the complexity of identified interactions between
environmental predictors and marine communities, it was decided to go beyond a classic
ResNet-18, and a ResNet-50 network comprising 50 layers was consequently chosen. The
first convolution layer was re-written to accommodate for 23 channels inputs, and the last
fully connected layer was set to output a tensor of size one, for the purpose of performing a
regression task.

iv.  Hyperparameters

Success in training a CNN is heavily dependent on the tuning of the set of hyperparameters
associated with the task. Table 2 presents the three main levers used to tune the training of a
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CNN, as well as the effect of their mistuning.

Table 2 : Main hyperparameters of a CNN and effect of their mistuning

Hyperparameter Definition Effect if too low Effect if too high

Learning rate Amount of | Slow training Divergence
parameter  change | Prone  to  local | Overshooting
between each batch | minima Unstable training

Number of epochs Number of times the | Underfitting Overfitting
whole dataset passes | Incomplete Wasted resources

through the network | convergence

Batch size Number of samples | Slow convergence High memory usage
treated before | Unstable training Overfitting
network update = Prone to  local
one ‘batch’ minima

It will consequently be necessary to take these parameters into account when training the
models. The learning rate is often regarded as the most important parameter in the training of
a CNN (Smith, 2017). Its optimal value is heavily dependent on the current stage of the
training : a high value will be more suited for the beginning of training, since the model is
blank and likely to output a very high loss. However, the risk of overshooting the minimum
becomes higher with each epoch. One way to address this issue is through the use of a
scheduler, which adapts the learning rate to the output of the optimizer function. The
schedulers and optimizers used for our CNN are detailed in part 2.d.

d. CNN Training

i.  Splitting procedure

The training of a CNN is usually divided into 3 steps : training, validating, and
testing. Each step requires its own independent dataset. The training set contains the samples
that will be used by the model to learn, via backpropagation. The validation set is a smaller
set that will be used to evaluate the model’s prediction ability at regular steps, allowing the
user to fine tune the model by changing the hyperparameters. The CNN knows the validation
set, but never learns from it. It is only affected by it indirectly, via the modifications made by
the user on the training step. The testing set is never seen by the CNN during training, nor
does it affect it in any way. It is only used to provide an unbiased evaluation of the CNN
prediction ability at the end of the training and validating steps. The training set usually
contains the majority of the samples, and a common split is 80/10/10 (Train/Validation/Test).

While it is common to randomly split a dataset, this basic strategy overlooks the

potential spatial dependence or spatial autocorrelation in the data. This can lead to
overoptimistic results since the training, validating and testing datasets are not independent,
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so the CNN can learn from this spatial dependency regardless of explanatory variables.
Ploton et al. (2020), have shown that non spatial split (random) of the dataset to train a model
designed to predict forest biomass variation provides a near 50% accuracy while a spatial
cross validation, where training and testing datasets are spatially independent gives quasi
random results, so no predictive power. One way of overcoming this pitfall is to perform a
spatial cross-validation split, that will group samples belonging to a spatial cluster into the
same subset, or fold. It will, for instance, prevent two samples that are highly correlated to
their spatial situation to be separated into the train set and the test set, which would
artificially boost the apparent accuracy of the CNN. While training, one fold is used as a
validation set, while the others are used as the training set. This leave-one-out procedure is
repeated for each fold.

For the GBIF dataset, samples were segregated following their situation in the
Mediterranean Sea, with five groups being created. For the data on eDNA, spatial
autocorrelation was tested through Moran’s I test using a number of neighbors of 10, in order
to capture both local and broader relations. Significant spatial autocorrelation was found, with
a Moran I statistic of 0.29 (p <2.2e-16). Results are illustrated in a Moran scatterplot in
Figure 5.
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Figure 5 : Moran scatterplot showing spatial autocorrelation of species richness (R) in the
eDNA dataset (k=10)

As a consequence, sample points were first grouped by distance into 20 clusters using
a k-means clustering algorithm on QGIS. Clusters were then randomly attributed to 6 folds so
that each fold contains approximately 1/6th of the total eDNA data. For each training
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procedure, one fold was chosen for the test phase of the model, while the other five were split
into a train set (4 folds) and a validation set (one fold). This split was repeated for each
possible permutation of the folds, so that each fold was used as a test set. All 6 folds as well
as a permutation example are presented in Figure 6.

Set
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@ Validation set
® Testset
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(b)
Figure 6 : Classifications of folds for the eDNA dataset (a), example of a 4/1/1 split between
the folds (b).
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1i.  Multimodal classification task on GBIF

Transfer learning takes advantage of the fact that feature extraction performed by a
CNN on a given task can be reused for another CNN on a similar task, given similar inputs
(Figure 7). A single CNN was trained with the GBIF dataset, on a multimodal classification
task that was originally designed for the [A-Biodiv challenge as part of the FishPredict
project. The goal was to accurately predict probabilities of presence of fish species in the
Mediterranean Sea. Learning rate was initialized at 0.0112 and gradually decreased following
a plateau scheduler, which is the most common scheduling method and consists in gradually
reducing the learning rate when the loss output hits a plateau (Al-Kababji et al., 2022). Cross
Entropy Loss was used to compute loss, and the optimizer function itself was set to
Stochastic Gradient Descent (SGD), as it has been observed to offer better generalization
performance than default Adam optimization, at the cost of longer training (Gupta et al.,
2021). The training of the classification model was carried out by LIRMM personnel.
Parameters of the classification CNN can be found in Table 3.
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Figure 7 : Conceptual workflow for transfer learning on GBIF and eDNA data

iii.  Regression task on eDNA

Two types of CNN were trained on the eDNA dataset. The first one was set to
measure the accuracy of a model that would be trained from scratch, using randomly
initialized weights for all 23 bands. Training was divided between all 6 possible permutations
among the folds, and 6 models were output for both modalities. For each modality, several
runs were carried-out in order to find the best possible tuning for the hyperparameters,
through trial and error.
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In the case of the untrained CNN, multiple batch sizes and learning rates were
experimented, as it was observed that training was unstable at typically used values. Multiple
methods of learning rate scheduling were tested. While the plateau scheduler works well in
the context of a smooth drop in loss, preliminary tests indicated that the network was prone to
encounter local minima, which can be mistaken by the scheduler with an actual optimum
plateau. Learning rate consequently decreased too quickly and training stalled with a high
loss value. In order to avoid this issue, a cyclic scheduler, as developed by Smith (2017) was
used for both the untrained and the pre-trained eDNA CNN. Cyclic schedulers make the
learning rate oscillate periodically between two threshold values, allowing the network to
escape local minima with higher learning rates while avoiding very fast loss divergence
known as gradient explosions. This method has proven to result in fast and efficient training,
including on ResNet architectures, bypassing the need to tune a global rate. Loss decreased
much more smoothly once a cyclic triangular scheduler was applied to the learning rate,
while keeping its base and maximum values low. As transfer learning implies the use of the
same architecture as the CNN that was used for pre-training, the pre-trained CNN was
initialized with the same architecture and in the same way as the untrained CNN. Weights
were loaded as a dictionary into the network, and the last fully connected layer, which was
designed for multimodal classification with 181 output classes, was rewritten to only output
one class, making it fit for regression. All layers were frozen, i.e. their weights and bias were
set to be insensitive to gradient backpropagation. This allows the preservation of the features
that were extracted during pre-training.

Tests were then performed with multiple training methods and hyperparameters.
Following common transfer learning practice, layers were unfrozen one by one starting from
the last (fully connected layer). Following this order, the CNN keeps in memory the
lowermost level features learnt during pre-training, and learns to detect new ones specific to
the transfer dataset and task. Additionally, since large discrepancies between the training and
validation accuracies suggested high overfitting during the training of the untrained CNN -
i.e. the model memorized the noise of the dataset and fit too closely to the training data - it
was decided to incorporate an L2 regularization method in the form of a weight decay of 0.1
in the optimizer. L2 regularization limits the scale of a CNN’s weights during
backpropagation, and helps prevent overfitting.

Since folds were slightly unequal and the dataset was small, an adaptive batch size
was chosen for each model, mostly to keep the CNN from training on extremely small
batches. Batch size was computed as a third of the size of the validation dataset for each
training. Both regression CNN used MSE as a loss value. The parameters of each CNN can
be found in Table 3. While training was carried out for 50 epochs, early checkpoints
corresponding to peaks of high validation R2 for each model were kept in an attempt to
evaluate the model’s generalization power before being subject to overfitting. This modality
will thereafter be referred to as “early stopping”.
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Table 3 : Architecture and hyperparameters chosen for the GBIF CNN, and both training
modalities on the eDNA dataset

Modality GBIF pre-training Untrained CNN Pre-trained CNN
Architecture ResNet-50 ResNet-50 ResNet-50
Layer 4 / fc unfrozen
Optimizer Stochastic Gradient Stochastic Gradient | Stochastic Gradient
Descent (SGD) Descent (SGD) Descent (SGD)
Weight decay 0.001 Weight decay 0.1 Weight decay 0.1
Scheduler / ReduceLLROnPlateau | Cyclic (le-3 - 1e-4) | Cyclic (1e-3 - le-4)
Learning rate
Loss Cross Entropy Loss MSE Loss MSE Loss
Batch size 256 Adaptive Adaptive

(Training dataset/10) | (Training dataset/10)

Training epochs 10 80 50

e. Random forests

Two random forests were carried out on both the punctual and contextual dataset in
order to assess the contribution of context features in the accuracy of a model. Each model
was fitted using 500 decision trees, with the maximum amount of predictors available. As a
consequence, 23 predictors were used for the contextual data, and 15 predictors were used for
the punctual data. Models were trained following a leave-on-out procedure, i.e. each model
was trained on five of the folds, with the remaining fold being used as a test set. This process
was repeated so that each fold was used as a test set, and a predicted value was output for
each sample of the total dataset. 6 models were trained. Richness predicted on the test sets
were then compared to actual values used to produce a general accuracy value. Feature
importance was measured by shuffling features one by one on the test sets, before calculating
the R? as an accuracy metric. The accuracy values were then compared. General importance
for a feature was calculated as the mean of its importance on all models. The randomForest
package for R was used.

f. Metrics

Accuracy was used as the metric for the multimodal classification task on GBIF. R?
was used as the final accuracy score for both the regression CNN and the random forest

models and calculated as :
2
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With Y, the true value and Y, the predicted value for all n samples.

As the predicted value can significantly differ from the true value, the R2 score may be
negative, meaning that the model performs worse than if it systematically output the average
value of y. Each R? value was computed on the whole dataset for each modality by combining
the predictions of all models. Training of the CNN was monitored through R? and loss, which
were output at each epoch end for the validation set. RMSE was also output for the random
forest and regression CNN models.

3. RESULTS

a. Random forests

R? was calculated from the actual and predicted species richness values. Accuracy for
the contextual model was found to be non-significant with a R? of 0.08. The difference in
accuracy between the contextual and punctual models was found to be significant. Results
for both random forest models can be found in Table 4.

Table 4 : R’ score output for the random forest model based on contextual and punctual data

Dataset R? score on test set RMSE on test set
Punctual data -0.02 16.35
Punctual + contextual data 0.08 15.55

Feature importance analysis was only carried out for the contextual model in view of
the poor R2 score of the punctual model. Importance was very variable among features.
(Figure 7). Substrate and SST were found to be globally important in the prediction of species
richness for both types of models. RGB Sentinel-2 bands were determined to be inequally
important, with only bands 3 and 4 (respectively green and red) contributing to the prediction.
Fishing was globally observed to have a negative impact on the prediction. Contextual data in
the form of map standard deviation was mostly found to be important in the Sentinel-2
infrared band.
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Figure 8 : Mean feature importance plot for the contextual random forest model. Importance
is the contribution of a feature to the test R’ score

b. Multimodal classification task

Multimodal classification output provided mitigated results. Loss was observed to
decrease slightly for validation, while it experienced a sharp decrease for training, resulting in
a discrepancy between the training and validation loss. Maximum validation accuracy was
measured at 0.078. Figure 8 displays the evolution of both the training and validation loss
value.
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Figure 9 : Evolution of the training and validation loss for the multimodal classification
pre-training CNN
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c. Untrained CNN

Across all untrained models, a general trend of convergence was observed during
training. However, it was found that all models were subject to a large discrepancy between
the training R* and the validation R?. While training R* plateaued at approximately 0.5 for all
models, validation R? stabilized well below 0, with some of the models displaying extremely
local positive surges. Large fluctuations were also observed in the validation R? after

convergence. Figure 9 displays the evolution of the training and validation R? scores for all
six untrained models.
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Figure 10 : Evolution of the train R’ (a) and validation R* (b) for all six models during
training with untrained weights
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d. Pre-trained CNN

In the case of pre-trained models, convergence was reached for all six CNN.
However, similar to untrained models, the CNN displayed high instability in their validation
R? after convergence was reached. Training R? displayed a similar trend as without
pre-training. However, validation R? scores, while negative for most models after
convergence, tended to plateau above 0 for model 1 and model 4, reaching peaks of
approximately 0.1 and 0.4 respectively. Additionally, models 1 and 4 plateaued above 0.
Figure 10 displays the trends of the training and validation R* scores for all six pre-trained
models. Global accuracy scores for the combined predictions of the models are variable, with
an R? of -0.24 for the early stopping, and 0.14 for the full training, which is superior to the
accuracy of both random forest models. Results are displayed in Table 5.

e S R e g e
0 _/-"’/' -
//'
Yy
gy Model
i1 Model 1
-1 f ',
o / f Model 2
‘% iy — Model 3
il 1/
& / — Model 4
\{.f ! Modsl 5
1/ Model 6
2 1
/f..
0 10 20 30 40 50
Epoch (
a)
0
|
A
| |
| W7 & ol Model
7 N1 Model 1
© ™\ f/{ ~ Modsl 2
(_% | — Model 3
1 a \
& (AR — Model 4
||‘. \/ Model 5
2 = Model 6
X
'
{l
|
If
if
I
3
0 10 20 20 a0 50
Epoch (b)

Figure 11 : Evolution of the train R’ (a) and validation R* (b) for all six pre-trained models

during training
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Table 5 : R’ score outputs for the totality of the CNN-predicted values, for both variable early
stopping, and end-of-training weights

Stopping method Global R? Score Global RMSE score
Variable stop -0.24 17.71
Full 50 epochs 0.14 15.01

4. DISCUSSION

a. Random forests reveal contextual importance

While both random forest models show very poor performance in the prediction of
species richness given our dataset, the contextual model is superior to the punctual model,
with an R? score of 0.08 against -0.02. This finding is consistent with a theory of landscapes,
and highlights the importance of studying features within their context, also in the marine
realm.

Although the analysis of the feature importance results should be handled in respect to
the poor performance of the random forests, observable trends tend to confirm complex
relations between predictors and biodiversity values. Feature importance results mostly align
with existing literature, highlighting the significance of substrate type and SST (Gibran and
Moura, 2012). Though of lesser significance, the presence of substrate diversity - initially
considered, with the standard deviation of bathymetry, to be one of the ideal proxies for
depicting seascape complexity - exerts a positive influence on the prediction of fish species
richness by the contextual model, which underscores the importance of habitat structure.
Despite the modest importance of these contextual features, these results, when seen in the
light of the improvement provided by the contextual model, suggest that interactions with
other local predictors at the seascape scale could play a more dominant role in enriching the
models' predictive capacity. This observation also aligns with existing literature, highlighting
how the impact of local characteristics depends on their broader contextual surroundings, as
discussed in the introduction (Gilby et al., 2016; Sievers et al., 2016).

However, the discrepancy between the better predictive ability of the contextual
model over the local one and the low importance of most contextual features is an indicator
of the necessity to bypass the creation of such limited proxies using seascape images and
CNN. Surprisingly, and while exerting a positive influence on the predicting ability, depth
does not emerge as one of the most important features contrary to literature findings (Rule

27



and Smith, 2007; Selfati et al., 2019; Stefanoudis et al., 2019). This low individual
importance might be due to the fact that while depth alone is known to have a significant
effect on fish assemblages, complex interactions with other features may be at play and dilute
its importance among other predictors, especially given the low range of bathymetric data in
seas surface eDNA samples. Additionally, the importance of Sentinel-2 imagery varies
among bands, with the green band (Band 3) being the third most important identified feature.
While the infrared band (Band 8) is not of a significant importance in the model, its standard
deviation is among the most important features for the contextual random forest model. The
contribution of these two bands to the predictions provided by the contextual random forest
model may be linked to their potential role as proxies for primary production driven by
phytoplankton through an equivalent of the Normalized Difference Vegetation Index (NDVI).
The presence of features of highly negative importance raises the question of the quality of
the data, as well as the selection of the predictors.

b. Successful training of the CNN, with mitigated results

The multimodal classification CNN’s results are mitigated. While the network
displayed fast training, and reached a positive validation accuracy, this value remains low,
and the large discrepancy between the training and validation loss suggests overfitting, which
is a problem to solve. This low performance questions the choice of predictors, but might also
be linked to the fact that GBIF data does not derive from standardized campaigns.

Similarly, the untrained network’s training has yielded poor results. Both the R? scores
for training and validation increased to reach a plateau, but the validation R* remained
notably low, even after convergence of the network. This suggests high overfitting despite the
L2 regularization, which is expected given the small size of the dataset. The instability
observed in the trend of the validation R? is indicative of poor generalization performance,
which was also expected since the network did not benefit from any pre-training.

Likewise, results for the fine-tuning of the pre-trained CNN were highly variable
among models. While all models show similar relative performances, model 1 and 4
converged towards a positive value, meaning that the models perform better than an average
output. Although this may be attributed to the pre-training since the training conditions and
hyperparameters between the untrained and the pre-trained CNN were identical, R* for the
validation of model 4 is surprisingly high and might be due to spatial auto-correlation. Model
4 was validated on fold 4, which can be observed to be a densely packed cluster in the
proximity of fold 1. Fold 1 is among those used for training model 4. R? starting points for
most models were surprisingly similar between the untrained and the pre-trained CNN, which
suggest that pre-training on GBIF data had a limited benefit. As fine-tuning was performed
on layer 4 and the fully connected layer of our CNN, which are by definition supposed to
extract higher-level features, this result questions the similarity of the pre-training (GBIF)
and fine-tuning task (eDNA), notably in the significance of high definition seascape features.
While pre-training involved structural predictions of fish communities, fine-tuning was set to
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predict species richness. Though this choice stemmed from a will to test our approach on a
simpler task, this could conversely be considered as an oversimplification of assemblages,
which may be detrimental to the predictive power of the CNN. While local species richness,
as a measure of alpha diversity (Whittaker, 1960), is widely used in ecological studies of
marine environments, it was for instance found to be insensitive to the presence of MPA by
Dalongeville et al. (2022). However, other indicators such as functional diversity, phylogenic
diversity and the ratio between pelagic and demersal fish differ significantly inside and
outside of marine reserves, suggesting they are more sensitive to human impacts. While time
was insufficient in the frame of this project, CNN accuracy might benefit from the use of beta
diversity indicators focusing on taxonomic dissimilarity between samples (Ricotta and Szeidl,
2009), if not from species trait-based metrics, which have been observed to reflect the state of
ecosystems in an efficient and consistent way (Mouillot et al., 2013). Tools such as the mFD
package for R (Magneville et al., 2022) may be used for such implementations.

Despite the poor performances of the model in regard to the validation, the CNN
performed surprisingly well when used to predict species richness on the test sets. While
early stopping output mostly provided negative R* and a global R? of -0.24 with an RMSE of
17.71, models that were trained for 50 epochs collectively showed an R* score of 0.14 with an
RMSE of 15.01, which is above the accuracy of both random forests. This is in accordance
with our hypothesis and goes in the way of demonstrating the superiority of a seascape
approach when compared with standard methods. However, while this result is promising , it
must be evaluated in the light of the contrasting poor performance on the validation sets, and
of the limitations of the dataset. Clustering, notably, might have failed to completely avoid
spatial auto-correlation, and could induce a performance boost for some of the CNN random
forests. While superior to the random forest, the CNN display an overall poor predicting
power. Additionally, the fact that accuracy is significantly better at the end of training than
for early stopping, despite similar validation R?, suggests that increased test accuracy might
be linked to overfitting on the training set.

Throughout training, the R? consistently increases, demonstrating that the architecture
is working and that the CNN is learning as intended. However, instability in the validation R?
suggests that the CNN unlearns features, indicating that some samples in the training set are
likely to carry contradictory information. Globally, these poor results likely stem from a
combination of problems concerning the biodiversity indicators that were used and
limitations of the dataset that will be detailed in part 3.c.

All other things being equal, our results suggest that CNN can provide better

predictions of biodiversity indicators than standard regression models by efficiently taking
into account contextual data.
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c. Lack of data and poor predictors of diversity

The main limitation we faced during training was the overall lack of data, as well an
apparent lack of diversity and relevance in the predictors. The number of eDNA samples
constituting the final set is very low when compared to the usual size of datasets used to train
CNN. Additionally, the range of species richness values is high and their frequencies
homogenous (Figure 11), which can arguably be seen as the sign of a robust dataset, fit for
training on a good span of situations. However, when compared to the distribution of
modalities in some of the predictors that were identified as most important in the literature, it
becomes apparent that sampling mostly occurred in low-depth zones (Figure 13), with an
over-representation of posidonia meadows and rocky substrates (Figure 12), which are known
to be high-potential environments in terms of biodiversity (Moreno, 2002). This may lead to
the CNN being fed a diversity of response values corresponding to a rather homogenous set
of inputs, leading to the confusion of the network from one batch to the other. Habib et al.
(2019) have shown that training accuracy on medical imagery increased with sample
diversity rather than with the size of the dataset. Ideally, the CNN should have access to a
large dataset consisting of diverse examples of predictors associated with a good range of
diversity values. In our case, both of these limitations arise from the necessarily biased
sampling plan that was carried out before this project : eDNA data was mostly collected in
areas that were known to be rich, with the main goal being to assess the efficiency of MPA in
the French Mediterranean Sea by comparing inventories performed both inside and outside of
protected areas (Dalongeville et al., 2022).
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Figure 12 : Frequency distribution of species richness in the eDNA dataset
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Furthermore, the distribution of sampling points was observed to be highly clustered,
which greatly complicated the creation of the folds used for cross-validation. Because one of
the main objectives was to build folds of a similar size, k-mean clustering led to the
generation of non-homogenous groups in terms of distance between the samples. For this
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issue to be resolved, all sampling points should be homogeneously distributed. Should a new
dataset be similarly clustered, other cross-validation methods, such as density-weighted fold
generation (de Bruin et al., 2022), are to be explored. Another solution may be to use a
weighted sampler, both for the GBIF and the eDNA CNN, to generate the batches while
keeping an even spread of predictor classes.

The first step in increasing the predicting power of our CNN should therefore be to rebuild a
robust dataset containing a large diversity of seascapes. The BioDivMed 2023 campaign
could take part in the building of such data, as 700 new eDNA samples will be gathered at
locations spanning over 2000 km (Université¢ de Montpellier, 2023).

d. Time and resources limitations

Researching, acquiring and treating data in order to produce a dataset that was
suitable for training has accounted for a large portion of this project. Because no pre-made
dataset was available for the majority of our predictors, it became necessary to develop
custom tools to treat available data. These procedures tended to be very time-consuming as
data was in the form of large rasters, vector maps, or, in the case of fishing data, very large
data frames. Similarly, deep learning networks, in particular CNN, are rather opaque fields
for untrained operators, and some tasks would benefit from more user-friendly procedures.
As CNN become increasingly used in the field of ecology, the development of large
multi-purpose datasets and tools will become essential in disseminating deep-learning
techniques. Such tools already exist : TorchGeo (Stewart et al., 2022), a python package
designed to help build geospatial datasets used in CNN, served as the basis for some of the
tools developed here.

Additionally, training a CNN is very labor intensive and costly in both time and
computing resources. Using high end graphics cards such as a Tesla A100 GPU, a single
training procedure can take up to an hour and half. Following the trial and error process that
was used here to try and find an optimal set of hyperparameters, this number is to be
multiplied by the tens of runs that were carried out for each of the models and modalities.
Considering the resources needed to successfully train a CNN this way, it is possible that
some of the selected hyperparameters and/or methods were sub-optimal given the dataset and
task that were developed. While more time might lead to the selection of a better set of
hyperparameters, it is important to highlight that one set is fit for a given task and that it
appears essential, in our situation, to prioritize the development of a better dataset rather than
to spend more resources trying to optimize training on current data.

e. Alternative methods and architectures

While it is essential to construct a better biodiversity dataset for training, some
alternative methods might be of use in preparation for a variety of tasks. In this project,
pre-training was carried-out on a task that was designed to be similar to the end objective.
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While this is theoretically an efficient method, building a preliminary dataset on a similar
task may reveal itself to be very resource-consuming, and can lead, as shown here, to
mitigated results. Moreover, this strategy relies on the existence of a large dataset of similar
response variables. One way to maximize the size of the pre-training dataset while removing
the need for actual biodiversity data would be through the use of self-supervised training.
Self-supervised training is based on the idea that feature extraction can be performed without
necessarily having access to actual values to predict (Yuan et al., 2021). During this
procedure, CNN are fed regular inputs, but pretext tasks are used to output a loss value : this
includes completing a part of the input, predicting relative positions of image patches etc.
Using self-supervised training, one can pre-train a CNN on a virtually infinite dataset.
Preliminary tests were carried out using 20 000 random bathymetry patches in the
Mediterranean Sea, and produced promising results. Data augmentation methods may also be
used to artificially increase the size of the final training dataset, by modifying existing data
(Maharana et al., 2022). Random cropping and rotations have already shown promising
results on the GBIF dataset, and might be tested on the eDNA data. Others tests also showed
that the joint use of the loss and of the recent Koleo loss, which is part of the DINOv2
architecture (Oquab et al., 2023), increases the performance of the GBIF CNN.

Finally, recent network architectures can be used to bypass the compromise between
high resolution imagery and geographically large tiles. Notably, transformer networks allow
to take into account both fine grain inputs and their respective geographical position inside of
a large scale context. Contrary to standard CNN, transformers divide images into multiple
tiles that are then linearized and treated as ‘words’ in a ‘sentence’. This ‘sentence’ is
embedded with a positional vector that contains information about each tile’s position within
the original image. Geographical position then becomes an input, and attention maps can be
computed to explore the impact of features on the predicted value (Vaswani et al., 2017).
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CONCLUSION

The CNN that was developed in this study yielded a significant improvement over standard
random forest methods, but remains limited in terms of predictive ability. However, the poor
performances of the random forest model highlight the probable responsibility of the dataset
in the CNN’s ineffectiveness. Contextual data was successfully identified as a pathway to
improve model accuracy, and underscores the need for the study of coastal environments in
the context of their seascape. With the implementation of new datasets built using upcoming
eDNA sampling campaigns, deep learning networks are likely to be central towards a new
generation of biodiversity models.

While our CNN were not successfully trained to accurately accomplish the task that they
were designed for, it is important to highlight that they were nonetheless successfully trained.
It is highly unlikely that significantly better results are in reach given the limitations of our
dataset. However, this project has contributed to the development of tools and workflows that
will be reused, and constitutes a theoretical and practical groundwork for further biodiversity
modeling tasks.
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