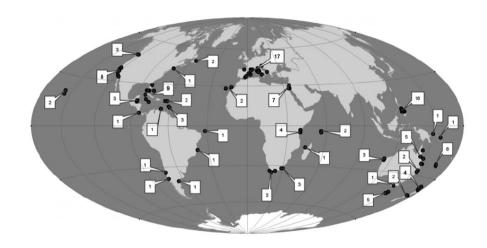


Atelier CSRP sur les AMP et la gestion des pêches

Dakar, 13 - 15 Décembre 2011

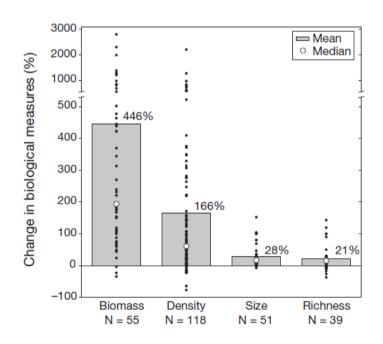
Volet Bio-écologique Etat de l'art

Laura-Mars HENICHART & Didier GASCUEL Pôle Halieutique AGROCAMPUS OUEST

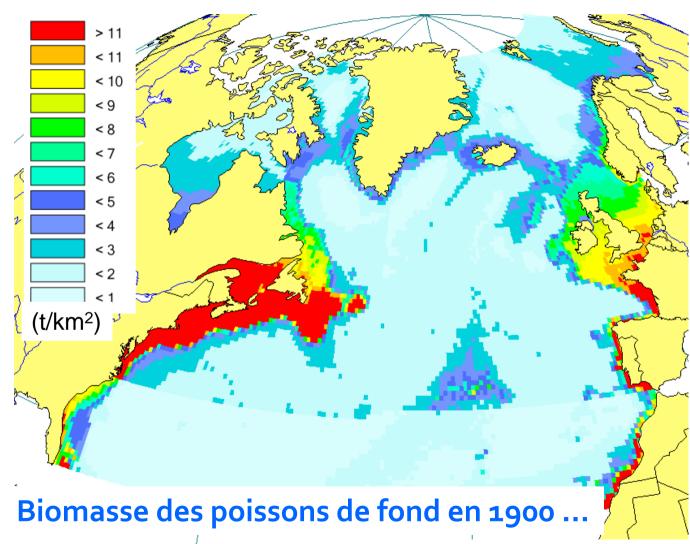


Introduction

Les AMP sont de plus en plus populaires ...

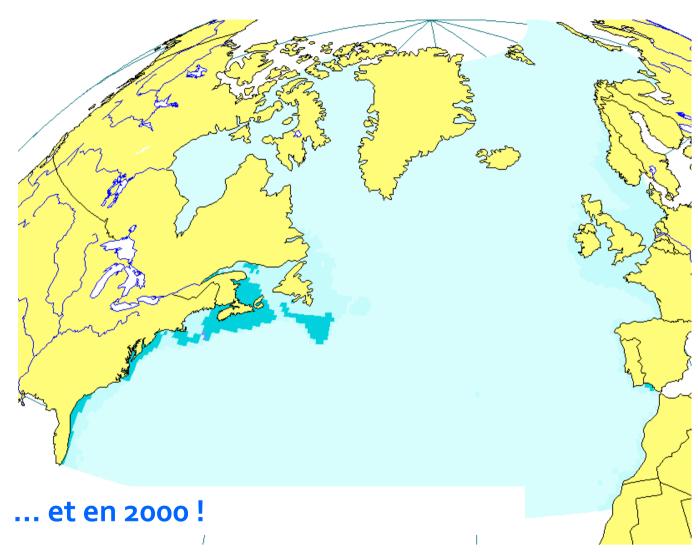

mais atteignent-elles toujours leurs objectifs bio-écologiques ?

Lester et al. 2009



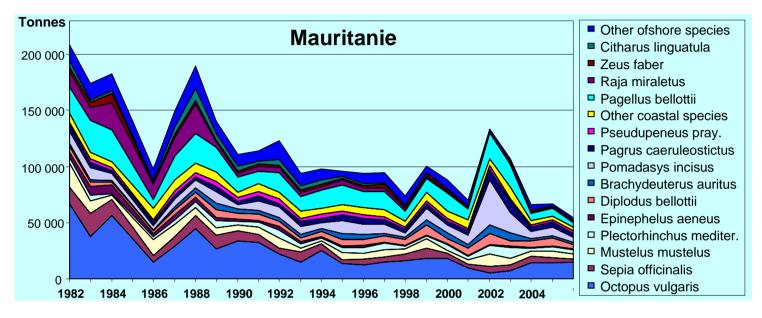
Effets de la pêche sur les ressources

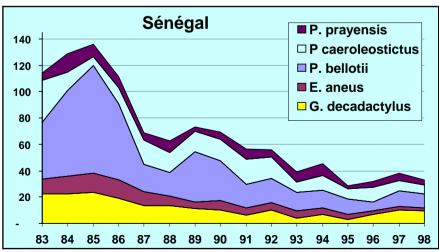
 Une forte diminution de l'abondance des espèces exploitées

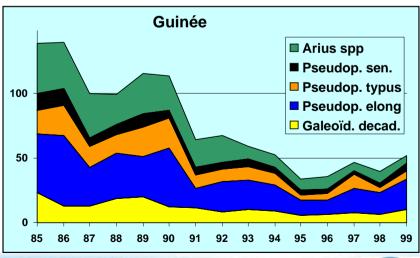


Effets de la pêche sur les ressources

 Une forte diminution de l'abondance des espèces exploitées

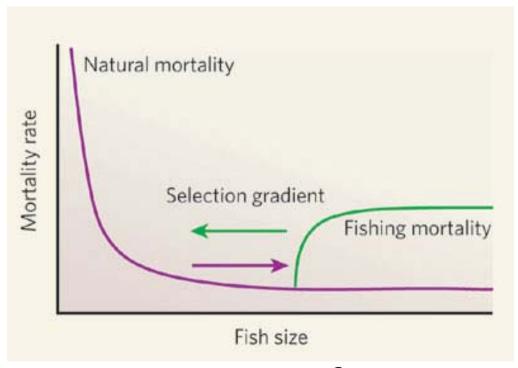






Effets de la pêche sur les ressources

 Une forte diminution de l'abondance des espèces exploitées

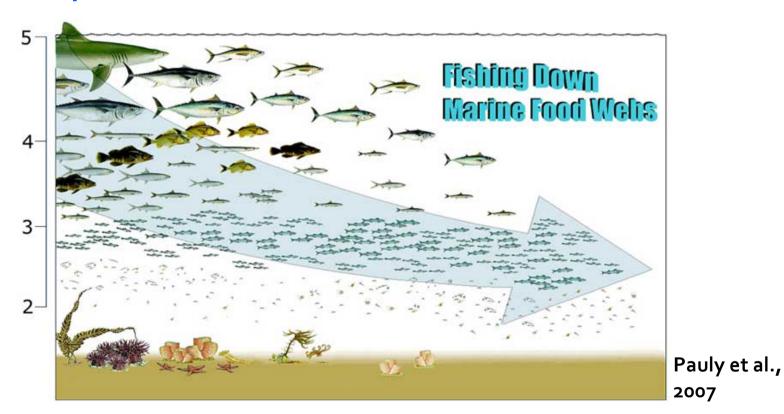


Effets de la pêche sur les écosystèmes

La pêche prélève les grands individus

- Baisse du potentiel reproducteur
- Sélection des « résistants » à croissance faible et fécondité précoce
 dérive des populations

Conover, 2007



Effets de la pêche sur les écosystèmes

La pêche prélève les grandes espèces (les prédateurs) ...

• Baisse du niveau trophique moyen

.. et impact sur les habitats

Méthodologie

Littérature scientifique

Plus de 150 articles scientifiques

Plusieurs centaines d'AMP

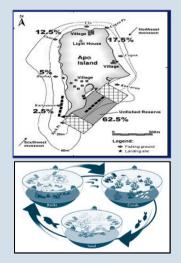
Zones tempérées et tropicales

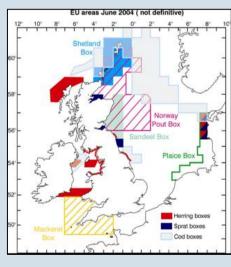
et Etudes de cas

13 études de cas

Contexte proche CSRP

Objectif de conservation ou de gestion




Etat de l'art des effets bio-écologiques des AMP sur les écosystèmes

- 1. Quels effets des AMP sur les ressources et les écosystèmes ?
- 2. Quels outils pour le suivi et l'évaluation de ces effets?

Effets bio-écologiques :

- des AMP réserves
- des réseaux d'AMP
- des AMP multi-usages
- des restrictions spatio-temporelles

Etat de l'art des effets bio-écologiques des AMP sur les écosystèmes

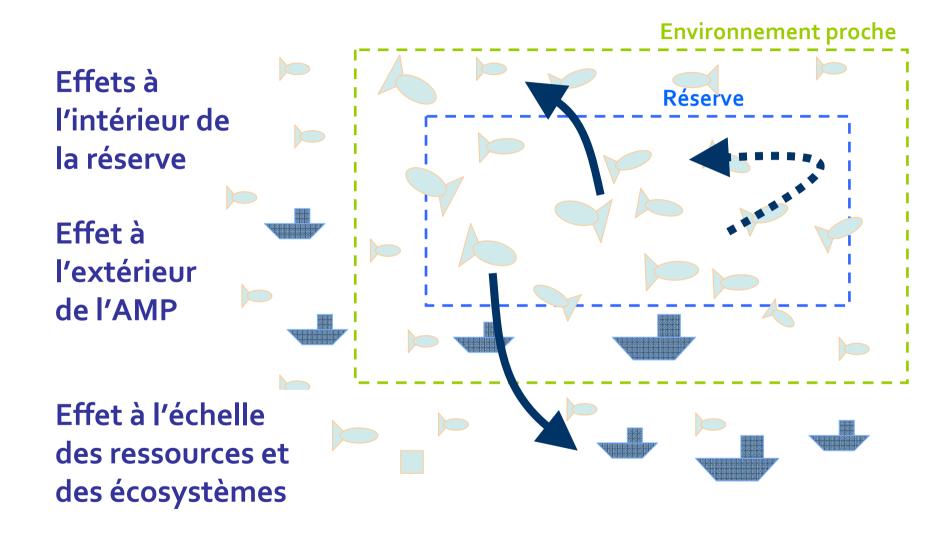
- 1. Quels effets des AMP sur les ressources et les écosystèmes ?
- 2. Quels outils pour le suivi et l'évaluation de ces effets?

Effets bio-écologiques :

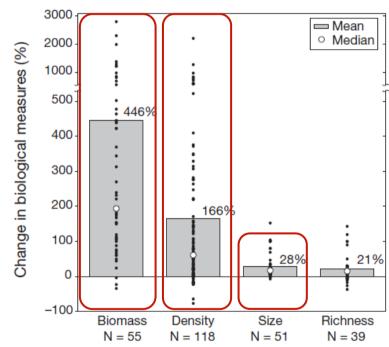
- des AMP réserves
- des réseaux d'AMP
- des AMP multi-usages
- des restrictions spatio-temporelles

Plus d'informations Plus étudiées

Situation pêche / absence de pêche



Quels effets des AMP?


Effets des réserves à l'intérieur de leurs frontières

• Effets positifs sur les populations protégées

Principalement sur la taille des organismes, la densité et la biomasse

Efficacité équivalente en zone tropicale & tempérée (malgré mobilité et durée de vie ≠)

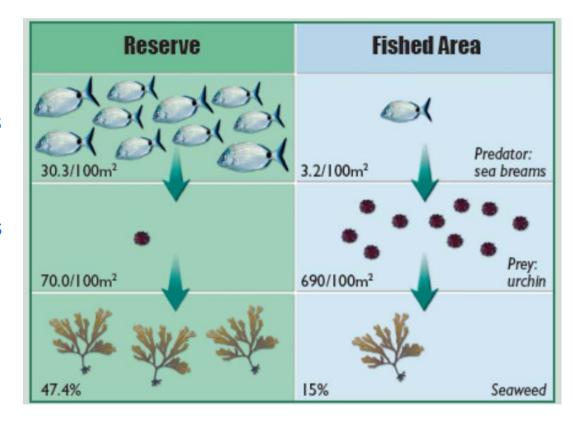
+ efficace sur les espèces cibles et les niveaux trophiques élevés (prédateurs)

Méta-analyse issue de 149 publications scientifiques (de 1977 à 2006) soit 124 AMP réserves

dont 53 en zone tempérée et 71 en zone tropicale

Grande variabilité et effets parfois négatifs

Effets des réserves à l'intérieur de leurs frontières


Effets de cascade trophique

Exemple de la réserve marine de Torre Guaceto

Poissons

Oursins

Algues

Guidetti, P. (2006) Ecol. Apps.; Fig. from PISCO, Science of Marine Reserves, Europe Edition, 2011

Effets des réserves à l'intérieur de leurs frontières

Effets de cascade trophique

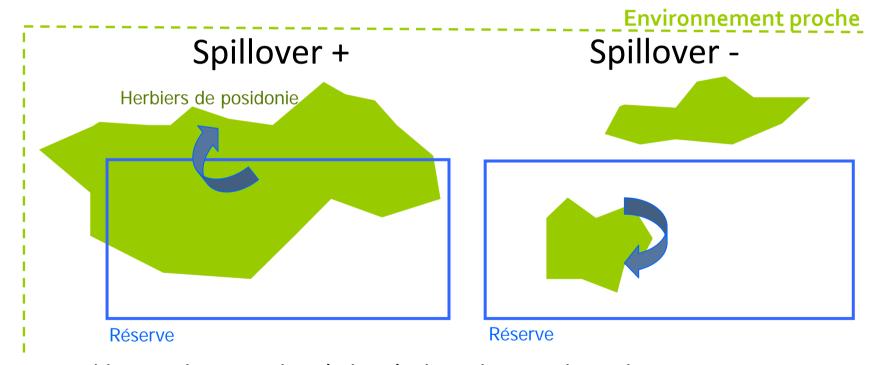
Exemple de cascade trophique sur 6 AMP réserves de Californie

Fermeture de la zone et arrêt de la pêche Objectif : protéger les populations d'ormeaux

Pêche Ormeaux / / Oursins

Effets de cascade non anticipés et effet de la réserve annulé par la prédation

Fanshawe et al. 2003



Effet « Spillover » ou de débordement (mouvement des adultes vers les zones adjacentes)

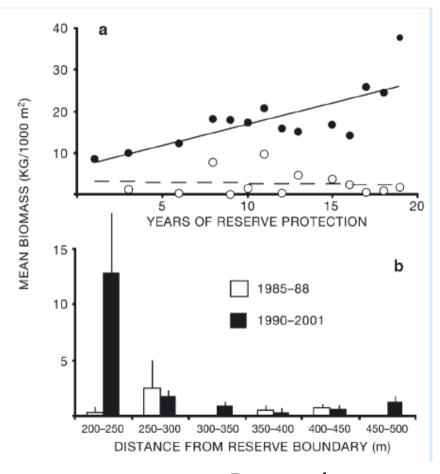
 Deux facteurs de succès : la mobilité des espèces et la connectivité des habitats

Mesnildrey et al., 2010 - d'après les résultats de Forcada *et al*, 2009 portant sur 3 réserves intégrales de Méditerranée

Effet spillover sur les communautés de récifs corralliens

Exemple de la réserve d'Apo Island (Philippines)

Suivi des biomasses de poissons chirurgiens à l'intérieur et à l'extérieur de la réserve de 1982 à 2001

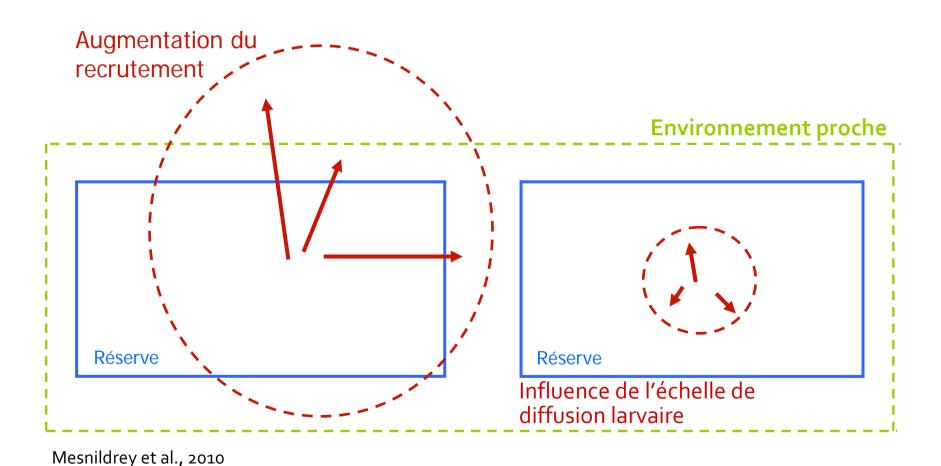

L'effet augmente sur une longue période

L'effet externe est limité au voisinage de la réserve

Spillover sensible de :

- 200 à 500 m (récifs ou petites AMP)
- 500 à qq km (grandes AMP)

Russ et al. 2003

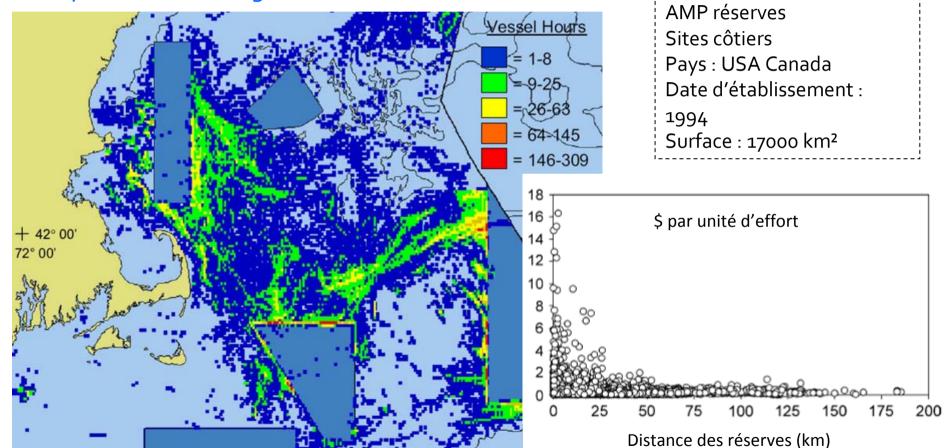


Dispersion larvaire > Spillover

Protection de l'habitat

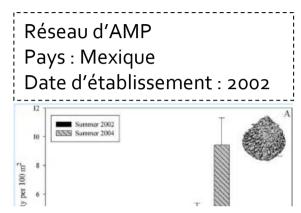
- Habitats sensibles
- Habitats essentiels
 - > zones de frayère
 - > zones de nourricerie

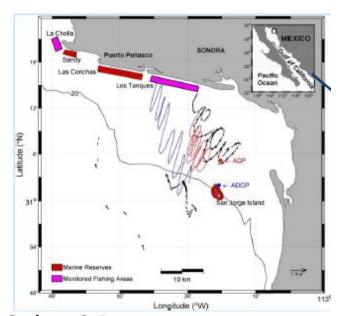
> Spillover



Effet de réserve et pêche

Exemple du Banc George Nord-Est des USA/Canada




Effets des réseaux d'AMP

Etude de la dispersion de larves dans un réseau d'AMP

Exemple du réseau d'AMP de Puerto Penasco

- Une AMP réserve au large
- Deux AMP réserves côtières
- Deux aires de gestion des pêches
- Protection de l'huitre et du murex Espèces à mobilité réduite (absence de spillover)

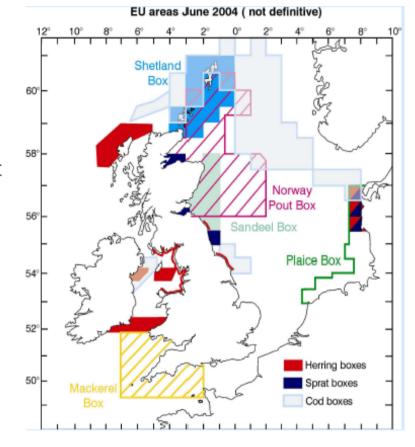
Protection zone au large → bénéfices pour l'ensemble du réseau

Grande variabilité au sein même de la zone couverte par le réseau d'AMP

Effets d'un réseau d'AMP : à évaluer précisément et en plusieurs endroits

Cudney & Bueno, 2009

Effets des restrictions spatio-temporelles


Exemple de l'Europe

Des objectifs spécifiques en fonction des espèces et des zones :

- Protection des stocks de reproducteurs
- Protection des nurseries ou des juvéniles et amélioration de la sélectivité
- Protection des prédateurs dépendants

Des mesures de gestion spatialisées :

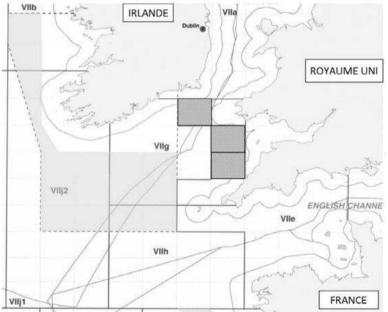
- Protection des stocks de reproducteurs
- Restriction temporaires, permanentes de capture
- Interdiction d'utilisation d'engins de pêche
- Restriction de maillage

Réduction de l'effort de pêche sur les stocks ciblés

Effets des restrictions spatio-temporelles

Exemple du Box Trévose – Mer Celtique

Espèce ciblée : Cabillaud Mer Celtique


 Objectif : réduire les débarquements, en limitant l'effort de pêche sur des zones d'agrégation pendant la période de reproduction Restriction spatio-temporelle partielle et saisonnière Pays : France, Irlande, Royaume Uni, Belgique Date d'établissement : 2005

Une réduction de l'effort de pêche de 13 % sur les stocks ciblés depuis la fermeture

Mais un impact négatif sur les autres stocks

ICES, 2007

Critères d'efficacité

L'efficacité est fonction

- des taxons
- du degré d'exploitation de l'espèce
- de la mobilité
- du potentiel de dispersion
- des interactions avec les autres espèces...

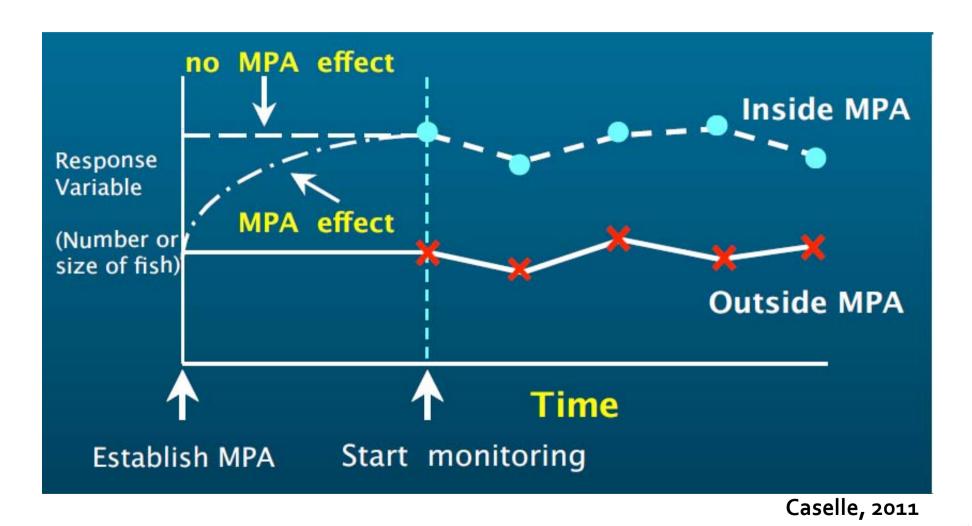
Mais aussi

- du niveau de protection et de conservation
- de la taille de la réserve
- de la localisation de l'AMP
- du suivi et du contrôle

Suivi et évaluation

- □ Suivi des paramètres écologiques pour évaluer :
 - Les populations (biomasse, densité, taille moyenne)
 - Les communautés (niveau trophique, groupe fonctionnels, diversité)
 - Les écosystèmes (structure et fonction)
- □ Diversité des méthodes de suivi, mais nécessité d'échantillonnages multiples :
 - > Avant et après la mise en place de l'AMP
 - A l'intérieur et à l'extérieur de l'AMP

Caselle, 2011



Suivi et évaluation

Indicateurs bio-écologiques

• Exemple des indicateurs définis par Pomeroy et al. (2006) 10 indicateurs, classés en fonction des objectifs spécifiques de l'AMP

Buts et objectifs Indicateurs	manicon ou				Protection de la diversité biologique					Protection des espèces individuelles						Restauration des zones dégradées										
B1	1A	1B	1C	1D	1E	1F	2A	2B	2C	2D	2E	2F	2G	3A	3B	3C	3D	4A	4B	4C	4D	5A	5B	5C	5D	5E
Abondance des espèces focales	•		•	•	•	•			•				•	•			•				•	•	•	•	•	•
B2 Structure de population des espèces focales	•	·	•	•		•		•	•	•		. ,		•			•		•				•	•	•	
B3 Complexité et répartition de l'habitat		•								•				•	•			•	•	•	•			•		•
B4 Composition et structure de la communauté		•	•	•			•		•		•		•		•		•	•	•	•	•		•	•	•	•
B5 Succès du recrutement dans la communauté		•			•		•	•										•	•	•						
B6 Intégrité du réseau trophique	•		•	•				•						•	•							•				

Indicateurs bio-écologiques

- Plusieurs listes sont disponibles :
 Pomeroy, Pampa, Amphore, ... DCSMM
- Une difficulté : la mise en œuvre dans des cas réels
- Un travail nécessaire de simplification ...
- ... et de mise en synergie avec les travaux de suivi de la qualités des milieux et des écosystèmes
- > Sélectionner des indicateurs en fonction des données disponibles
- Définir la périodicité des suivis

Les modèles

- Des outils pour :
 - Comprendre le fonctionnement des écosystèmes
 - Évaluer l'efficacité des réserves (dedans, et potentiellement dehors)
 - Analyser différents choix de gestion (aide à la décision)
- Une large palette d'outils, répondant à une diversité d'objectifs
- Une utilisation souvent limitée par les données disponibles

Les modèles

Question à l'étude	Modèles mono spéci- fiques	Modèles mono. spatialisés ou couplés	MS VPA	OSMO SE	EwE	ISIS- FISH	ATLA NTIS
Fonctionnement d'un écosystème				X	X	X	X
Changement d'état d'un écosystème				x	X		х
Impact sur l'espèce ciblée	×	x	X	X	X	X	X
Reconstitution de stocks décimés	X	x	X	Х	Х	Х	х
Modification de l'habitat							х
Dispersion larvaire		X					
Effet spillover		Х					
Forçage trophodynamique			Х	Х	Х		х

Conclusion

- Effets positifs sur les populations protégées
- Principalement sur la taille des organismes, la densité et la biomasse
- Augmentation du potentiel reproducteur
- Maintien de la structure démographique

- Effets en cascade sur les espèces proies
- Effet de débordement et dispersion larvaire

Grande variabilité selon les espèces et les écosystèmes + Effets parfois plusieurs années après la mise en réserve

Conclusion

Du point de vue de la pêche

 Augmentation des biomasses exploitables à proximité de la réserve

< pertes de captures intra-réserve

• Augmentation du recrutement Très significatif pour les espèces surexploitées et si localisation AMP judicieuse

- Diminution de la mortalité par pêche Les AMP comme outil de régulation collective de la pression de pêche
- Constitution d'une biomasse de réserve Contribution à la résilience du stock (impact climatique, etc.)
- Protection d'espèces d'intérêt halieutique fragiles

Conclusion

- L'AMP réserve : un outil parmi d'autre, à intégrer dans une démarche globale de gestion
 - > de la pression de pêche
 - > et de la stratégie d'exploitation écosystémique
- Réconcilier des impératifs de conservation et des objectifs de production halieutique

Développement d'une pêche responsable acceptée et reconnue

• MERCI

