EcoTroph: modeling marine ecosystem functioning and impact of fishing

Didier Gascuel (1,2), Villy Christensen (2), Daniel Pauly (2)

- 1. Fisheries and Aquatic Sciences Center, Agrocampus Rennes, France
 - 2. Fisheries Centre, University of British Columbia, Canada

Amédée, Janvier 2008

As an introduction ...

Development of theoretical models remains needed for EAF

An example within single species approaches: the Schaefer model

-> a theoretical and practical tool

As an introduction ...

Development of theoretical models remains needed for EAF

An example within single species approaches: the Schaefer model

-> a theoretical and practical tool

In the field of ecosystem approach: the Ecopath model

-> a practical (data driven) tool

Don't confuse: the biomass $\mathbf{B}\tau$ present in the trophic class $[\tau, \tau + \Delta\tau]$ the biomass flow $\Phi\tau$, passing trough the trophic class

> The dynamic of the trophic flow

- A discrete process at the particles level ...
- ... and a continuous model that expresses the mean process

- The trophic flow is characterized by:
 - the biomass flow $\Phi \tau$ (in t/year),
 - the speed of trophic flow $\Delta \tau / \Delta t$ (in TL/year)

Biomass
$$\tau = \frac{\text{Flow } \tau}{\text{Speed } \tau}$$

$$\mathbf{B}\tau = \frac{\Phi\tau}{\Delta\tau/\Delta t} \cdot \Delta\tau$$

> The biomass flow model: $\Phi(\tau + \Delta \tau) = \Phi(\tau) \cdot e^{-(\mu_{\tau} + \phi_{\tau}) \cdot \Delta \tau}$

Natural loss

Fishing loss . Exploitation

- . Excretion,
- . Non pred.mort.
- . Respiration

 $e^{-\mu}$ =Trophic efficiency

> The speed of the flow model

- 1. Reference state (current or virgin)
 - For case studies: field estimates
 - For theoretical purposes: an empirical generic model

$$(\Delta \tau / \Delta t)_{ref} = a \times \tau^{-b}$$

= 20.2 x e ^{0.041 θ} x $\tau^{-3.26}$

(Gascuel et al., sub. Ecol.Mod)

2. The Top-down equation:

$$(\Delta t/\Delta \tau)_{\tau} = (1-\alpha) \cdot \mathsf{Mref}_{\tau} + \frac{\alpha}{\alpha} \cdot \mathsf{Mref}_{\tau} \cdot \left[\frac{\mathsf{B}(\tau+1)}{\mathsf{Bref}(\tau+1)}\right]^{\gamma} + \mathsf{F}_{\tau}$$

The speed of the flow depends on predators abundance

- $\alpha = 0$: Bottom-up
- $0 < \alpha < 1$: Top-down

Higher the catch, lower the life expectancy, higher the speed of transfer.

Theoretical analysis of functioning -> generic relationships between parameters

Biomass input control: $\Phi(1) = (1-\beta) \cdot \Phi v(1) + \beta \cdot \Phi v(1) \cdot \frac{B \text{ tot}}{B v \text{ tot}}$

Hypothesis = the primary production partly depends on detritus recycling

Detritus-based ecosystems are more sensitive,

(without top-down control)

- Ecosystem biomass decreases with exploitation
- Top-down ecosystems are more resilient
- Detritus-based ecosystems are less
- Predators are severely affected

 Impact of fishing on ecosystem biomass increases when the trophic level of first catch TL50 decreases

Catch:
$$Y_{\tau} = \phi^*_{\tau} \cdot \Phi^*_{\tau} \cdot \Delta \tau$$

Catch (t/year) Increasing fishing efforts 2,0 2,5 3,0 3,5 4,0 4,5 5,0 Trophic level (TL)

- Wide potential catches on low trophic levels
- Over fishing of high trophic levels
- Fishing down the marine food web

Accessible flow:

$$\Phi^*(\tau + \Delta \tau) = \Phi^*(\tau) \cdot e^{-(\mu^* \tau^* + \Phi^* \tau) \cdot \Delta \tau}$$

$$\Psi^*_{\tau} \cdot \Delta \tau$$
With μ^*_{τ} : rate of flow loss + flow gain (from inaccessible biomass)

- Top-down ecosystems are more productive
- Detritus-based are less
- Ecosystem over-fishing occurs for highest fishing mortalities

- Exploiting low trophic levels leads to higher catches and higher ecosystem FMSY
- ...but it induces strong biomass depletion and severe over-fishing for top predators

3 - EcoTroph: application to a case study

Application to the Guinean ecosystem (1985 and 2004)

 Here (but it's not a requirement of EcoTroph), the Ecopath model (35 boxes) is used for estimating the EcoTroph input parameters (B, P/B, and TL)

The Catch Trophic Spectrum Analysis (CTSA): a method to estimate fishing rates and ecosystem biomass, from total catches by trophic level.

Input parameters

- . yields per trophic level $Y\tau$
- . kinetics of transfers a,b,c
- . trophic efficiencies e $-\mu_{\tau}$
- . intensity of top-down control α (et β)

reverse forms of EcoTroph equations

Estimates

- . fishing flow loss $\phi \tau$
- . fishing rates $E\tau = \phi \tau / (\phi \tau + \mu \tau)$
- . Biomass flows $\Phi \tau$
- . Biomasses Bτ

...like a VPA (backward or forward)

ET – CTSA: a tool to estimate:

- biomass
- fishing impact
- fishing strategies
- ...

A model of the past ...and a method to estimate input parameter of forecast

A dynamic model, for fitting on time series

(Guinea, 1985-2004)

Biomass trophic spectra

First run ...
change parameter
(top-down,
efficiency,...) ...

Cf. Ecosim

Conclusion

- 1. Functioning of marine ecosystems can be conceptualize as a continuous trophic flow, from low to upper trophic levels
- 2. The EcoTroph model is based on simple assumptions:
 - The biomass flow decreases with trophic levels (according to the trophic efficiency)
 - The speed of the flow is faster in low trophic levels
 - Top-down control: flow kinetics depend on predators abundance
 - Secondary production partly comes from biomass recycling
- 3. EcoTroph input parameters are calculated as functions of TL (leading to a strong decrease in the number of parameters required)
- 4. The model leads to a consistent theoretical representation ... of almost all we already know (yield, biomass, mean TL, cascades, resilience,...)
- 5. It is complementary to Ecopath for case study analyses (and should be proposed as an additional routine of EwE ...in few months)

Thanks

Study supported by the EU Marie Curie programme MOIF-CT-2006-38767

EcoTroph versus Ecopath?

- Ecopath (and Ecosim) is also a model of biomass flow: $\mathbf{P}\tau = \Phi\tau \cdot \Delta\tau$
- The speed of the flow is equal to the Production/Biomass ratio: $\Delta \tau / \Delta t = (P/B)\tau$
- Two processes are involved in trophic transfers: predation and growth
- In study state P/B = Z -> The speed of the flow depends on F, Mo, M2

2 - Theoretical approach – EcoTroph versus Ecopath

uation
= Φ.Δτ
$\mathbf{B} = \Delta \mathbf{\tau} / \Delta \mathbf{t}$
= P/(P/B)
$= \mathbf{\Phi} \cdot \Delta \tau /$